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ABSTRACT

LEO trajectory modeling is a fundamental aerospace capability and has applications in many areas of aerospace, 
such as maneuver planning, sensor scheduling, re-entry prediction, collision avoidance, risk analysis, and formation 
flying. Somewhat surprisingly, modeling the trajectory of an object in low Earth orbit is still a challenging task. This 
is primarily due to the large uncertainty in the upper atmospheric density, about 15-20% (1-sigma) for most 
thermosphere models. Other contributions come from our inability to precisely model future solar and geomagnetic 
activities, the potentially unknown shape, material construction and attitude history of the satellite, and intermittent, 
noisy tracking data.  Current methods to predict a satellite’s re-entry trajectory typically involve making a single
prediction, with the uncertainty dealt with in an ad-hoc manner, usually based on past experience. However, due to 
the extreme speed of a LEO satellite, even small uncertainties in the re-entry time translate into a very large 
uncertainty in the location of the re-entry event. Currently, most methods simply update the re-entry estimate on a 
regular basis. This results in a wide range of estimates that are literally spread over the entire globe. With no 
understanding of the underlying distribution of potential impact points, the sequence of impact points predicted by 
the current methodology are largely useless until just a few hours before re-entry. 

This paper will discuss the development of a set of the High Performance Computing (HPC)-based capabilities to 
support near real-time quantification of the uncertainty inherent in uncontrolled satellite re-entries. An appropriate 
management of the uncertainties is essential for a rigorous treatment of the re-entry/LEO trajectory problem. The 
development of HPC-based tools for re-entry analysis is important as it will allow a rigorous and robust approach to 
risk assessment by decision makers in an operational setting. Uncertainty quantification results from the 
uncontrolled re-entry of the UARS satellite will be presented and discussed.

1. INTRODUCTION

Quantifying the uncertainty in the time and location of a satellite’s re-entry into the Earth’s atmosphere is difficult. 
The forces experienced by a satellite in Low Earth Orbit result in a highly nonlinear set of dynamic equations of 
motion. Many of the terms are not know with certainty, due to a lack of detailed knowledge of the physical 
environment and the spacecraft’s construction. This leads to an inherent uncertainty in the predicted re-entry time 
and location.  Due to the complicated nature of the equations of motion, it is difficult to adequately capture this 
uncertainty using analytical techniques. In cases such as this, the uncertainty can be quantified through numerical 
simulation. The confidence in the re-entry estimate depends on the certainty of the model inputs. Uncertainty 
Quantification (UQ) is the practice where one tries to determine the likelihood of a particular re-entry time if some 
aspects of the system are not known exactly. Several methods exist to quantify the uncertainty, see [1] for a review. 
Of the methods discussed in [1], Monte Carlo simulation is the most developed Uncertainty Quantification method, 
and has a number of advantages over alternative methods. Monte Carlo methods are nonintrusive, meaning the 
function used in the uncertainty calculation does not have to be modified in any way, and can be treated as a black 

box function. Unfortunately, Monte Carlo methods are slow and typically converge asymptotically as 1 √�⁄ , where 
N is the number of trials. However, under very modest assumptions, converge is guaranteed.  

In cases where the distributions of some of the model input parameters are not known, they can be estimated 
simultaneously with the re-entry time and location using a Markov Chain Monte Carlo algorithm, to be described in
the following section. Essentially, a very large number of re-entry trajectory simulations can be performed. Each 
simulation is performed using a different acceleration model. The acceleration models, by design, cover the set of all 
possible accelerations experienced by the spacecraft.  In order to ensure that the resulting probability distribution 



adequately represents the true probability distribution, a Markov Chain can be constructed that has the target 
probability distribution as its equilibrium distribution. After a sufficiently large number of steps have been taken by 
the chain, the state of the chain can then be used to generate samples for the ensemble. The quality of the resulting 
probability distribution improves by running the chain for more iterations. This can be costly, so High Performance 
Computer (HPC)-based algorithms will be used to enable uncertainty quantification of the re-entry/LEO trajectory 
in near real-time. This is important as it will allow a rigorous and robust approach to risk assessment by decision 
makers in an operational setting

2. MARKOV CHAIN MONTE CARLO
Markov Chain Monte Carlo (MCMC) represents a general class of computing techniques that are used in a great 
many different fields, such as physics, chemistry, biology, and computer science. The method has been extensively 
discussed in the literature and has a sound theoretical foundation. For a review of the topic, many excellent tutorials 
exist, see [2] for an example. The goal is to construct a probability model of the satellite re-entry based on the 
observed data. Once constructed, the probability model can be used to estimate any statistical quantity of interest, 
such as the most likely re-entry time or even a Bayesian confidence region for the re-entry location. Let 

�: ���, ⋯ , ��� denote the vector of p parameters that are required for modeling the satellite’s trajectory. Any prior 
beliefs about these parameters, before any new data is collected, is expressed using a prior probability distribution, 
�(�). Upon collecting new data, the prior can be updated using the likelihood function, �(�|�), where � =
(��, ⋯ , ��) represents the new data collected. The updating is done using Bayes’ theorem,

                                                 �(�|�) =
�(�)�(�|�)

∫ �(�)�(�|�)
�

                                                             (1)  

where �(�|�) is called the posterior distribution and represents the probability of the parameters p after the new 
data has been collected.

The expression in the denominator of (1) involves integration over all possible satellite trajectories. Generally, this 
integral is intractable and cannot be solved analytically.  Thus, in most cases (including satellite re-entry), eq (1) 
cannot be solved exactly. However, an approximation can be computed very easily and efficiently using the MCMC 
method. The exact approach will be discussed below, but a very brief summary of the method is given here. The 
MCMC technique is used to generate a large number of satellite trajectories. Each satellite trajectory generated by 
the algorithm is sampled in direct proportion to its probability. Thus trajectories that are very likely will be sampled 
many times by the algorithm. Trajectories that are not very likely will only be sampled a few times (or not at all) by 
the algorithm. Once an ensemble of satellite trajectories has been generated, any sort of statistical calculation can be 
performed, such as computing a mean, variance or credible interval. Accuracy can be improved simply by sampling 
a greater number of trajectories. The importance of an efficient method for computing the satellite trajectory 
likelihood lies in the fact that the MCMC method will typically require a large number of iterations. Numerical 
integration of satellite re-entry trajectories is generally difficult and time consuming, and hence this method will 
require a large computer in order to generate results in a timely manner.

The method starts by defining a Markov Chain, ℳ, which will be used to generate samples from a probability 
distribution � on the space of all possible re-entry trajectories, Ω.  By construction, ℳwill have states � ∈ Ω and a 
stationary distribution �(�). If the current state of the chain is �, a new state �� will be proposed for the next step 
of the chain. The new state will be generated following a proposal distribution, �(�, ��), which is dependent on the 
current state of the chain. The proposed move �� will be accepted with a probability

                                                                          �(�, ��) = min �1,
���������,��

�(�)�(�,��)
�.

By the ergodic theorem, it can be shown that ℳwill converge to its stationary distribution as long as ℳ satisfies a 
few requirements, such as being irreducible and aperiodic (see [3] for details).  Using a uniform proposal
distribution (see table 1) allows a simplification in the acceptance probability,



                                                                                 �(�, ��) = min �1,
�����

�(�)
�.

The acceptance probability �(�, ��) now depends only on the ratio of the likelihoods, and does not require 
knowledge of the normalizing constant Z. This is exactly what we need. It allows us to generate a large number of 
re-entry trajectories in direct proportion to their probabilities, but without requiring an intractable integration over all 
possible trajectories.  The only requirement is to compute the likelihood of a re-entry trajectory. The log likelihood 
function, �(�|�), is computed by calculating the chi-squared cost between the model’s semi-major axis value, ��,
and the data semi-major axis value, �� , at the validity time of a TLE, and summing over all the data points used in 
the calculation:

                                  log �(�|�) = ∑ −
�

�
�

��
� ���

�

�
�

�
�
��� .

Here, � is the variance of the semi-major axis data. Since TLE data do not have estimates of the semi-major axis 
variance, this value has to be obtained from other sources. For this analysis, a value of 100 meters was found to 
yield good results. Each Monte Carlo trajectory is performed using a different acceleration model. The acceleration 
models, by design, cover the set of all possible accelerations experienced by the spacecraft. The sources of 
uncertainty accounted for in this analysis were related to the spacecraft’s ballistic coefficient calculation, the 
modeling error in atmospheric density, and errors in solar and geomagnetic forecasts. Modeling the uncertainty due 
to the ballistic coefficient required 4 parameters, the uncertainty atmospheric density required 1 parameter (normal), 
and the solar activity was modeled using a different stochastic model (described in next section) for each iteration. 
Uncertainty in the predicted re-entry due to the geomagnetic activity uncertainty was not accounted for in this 
analysis. Future efforts will incorporate this source of uncertainty as well.

The Markov Chain will be simulated using the algorithm described in table 1. The probability of a particular re-entry 
time is estimated using 

                 ��� =
�

�������
∑ �(� < �� < � + ��)���

�����
,

where ��� is the probability of the satellite re-entering at time t, and nmc and nbi are the total number of Monte Carlo 
iterations and an initial number of discarded moves performed in the calculation, respectively.  Thus the probability 
is obtained by simply counting the number of re-entry trajectories that contain occur between t and t+dt and
normalizing by the total number of iterations used in the calculation. 

Table 1 MCMC algorithm for Re-entry Uncertainty Quantification. Below, N(m, �) refers to a random draw from a 
normal distribution having a mean of m and a variance of �.

MCMC Algorithm
for iteration 1,…,N

a. Initialize proposal trajectory using current trajectory
b. sample  U from [1,2,3,4] uniformly at random

                    if   U = 1  then  (Area-to-mass ratio move)

                            
�

�����
= � �

�

�����
,

�

�����
10.0⁄ �

                   else if   U = 2  then  (shape parameter 1 move)

                             �����
� = �������

� , �����
� 10.0⁄ �

                   else if   U = 3  then  (shape parameter 2 move)

                             �����
� = �������

� , �����
� 10.0⁄ �

                  else if   U = 4  then  (shape parameter 3 move)

                             �����
� = �������

� , �����
� 10.0⁄ �

                  end if
c. compute trajectory, calculate likelihood
d. accept/reject proposed re-entry trajectory using �(�, ��)
e. record resulting re-entry time, location



3. SATELLITE RE-ENTRY MODELING

This section will describe the approach used to model the satellite re-entry trajectory. A model of the acceleration 
experienced by a satellite is required when computing a re-entry trajectory.  The acceleration model is discussed 
below, and includes terms due to Earth’s gravity, lunar and solar perturbations, and atmospheric drag. Due to the 
high accuracy achievable with numerical integration, a multistep numerical integration routine was used in 
predicting the satellite’s re-entry trajectory, see [4] for details. The integration routine was executed with a step size 
of 60 seconds. This step size was maintained until the spacecraft’s altitude had reached 120 km, at which point the 
step size was decreased to 1 second. Re-entry was defined to occur at an altitude of 100 km. Once this condition was 
met, the integration routine was halted. The acceleration due to the Earth’s gravity was modeled using the Joint 
Gravity Model-3 (JGM-3) at order and degree 70 [5].

Atmosphere Model
The NRLMSISE00 atmosphere model [6] was used to compute atmospheric densities, temperature and estimate the 
concentration of atomic oxygen. The atmospheric density was necessary for computing the drag acceleration, and 
the atomic oxygen concentration was used to estimate the accommodation coefficient (which was used in the drag 
coefficient calculation, see next section for more details).  NRLMSISE00 is an empirical model of the Earth’s 
atmosphere, and extends from the ground to the exobase. The inputs to the NRLMSISE00 model are: current year, 
day of year, seconds in the day, altitude, latitude and longitude, local apparent solar time, 81 day average of the 
F10.7 flux, daily F10.7 flux for previous day, and the daily magnetic index. The model outputs are: number densities 
of He, O, N2, O2, Ar, H, N and anomalous oxygen, the total mass density, exospheric temperature, and temperature 
at altitude.

The NRLMSISE00 (as well as other atmosphere models) has been shown to have errors in density on the order of 
15-20% [7]. This is a significant source of uncertainty, and hence the modeled density was treated as an uncertain 
model parameter when computing drag. The atmospheric density was treated as a Gaussian random variable, with a 
mean given by the NRLMSISE00 model, and a width of 20%. This was done to generate an ensemble of 
atmospheres for modeling the possible drag accelerations the spacecraft might experience. 

For each Monte Carlo trial performed, a random draw was made from a Gaussian distribution, denoted by gatmo. This 
distribution had a mean of 0, and a width of 0.2. This value was then used to adjust the density for the trajectory 
calculation, 

                                                              ����� = �(0,0.2)

                                                          ������ = (1 + �����)�����������

    
where N(m, s) is the normal distribution with a mean of m and a sigma of s, ����������� is the density generated 
from the call to the NRLMSISE00 model, and ������ is the density used when computing the drag.   

The oxygen concentration estimated by the NRLMSISE00 model was used to compute an estimate of the 

accommodation coefficient. The accommodation coefficient, accom , is a convenient measure of the interaction 

between the incoming atmospheric molecule and the surface of the satellite. In a sense, accom , describes how much 

memory the gas molecule retains of its initial velocity after its interaction with the satellite surface. Values of 

accom can vary from 0 to 1, and is approximately 0.9 at altitudes of 300 km [8]. Values of 1 indicate complete 

accommodation, meaning the emitted particle has a kinetic energy that has completely adjusted to the thermal 
energy of the surface. According to [9], the accommodation coefficient is related to the concentration of atomic 
oxygen at the altitude of the satellites, which is correlated with the Sun’s effect on the Earth’s atmosphere. A 
number of papers review accommodation at orbital altitudes and the effects on satellites (see [8, 10] and references 
contained therein). The semi-empirical model described in [9] will be used to estimate the accommodation 



coefficient. The atomic oxygen density computed using NRLMSISE00 model will be used as input into the 
accommodation model. The accommodation coefficient will then be used to compute the satellite’s coefficient of 
drag.

Solar and Geomagnetic Activity Models
The NRLMSISE00 atmosphere model requires estimates of the solar radio flux at the 10.7 cm wavelength and the 
geomagnetic activity index, Ap. The indices required include the daily values for the F10.7 and magnetic fluxes, as 
well as the 81 day F10.7 average. In order to obtain accurate estimates of the atmospheric density, it is necessary to 
accurately predict the future values of these indices. Unfortunately, it is difficult to accurately predict these values, 
and represents a significant source of uncertainty when predicting the re-entry of a spacecraft. The predicted values 
of both F10.7 and Ap were obtained from http://celestrak.com/. These estimates are in turn gotten from the National 
Oceanic and Atmospheric Administration (NOAA). The uncertainty in the predicted future values of the observed, 
daily F10.7 was modeled using a scalar exponential Gauss-Markov sequence, see [11] for details. This method 
allows the creation of an ensemble of realistic predictions of F10.7 which capture the daily variation around the 
mean prediction provided by NOAA. The Ap predicted value was used in the calculation of the atmospheric density, 
but was not included in the uncertainty analysis.

Fig. 1 Example stochastic trajectories of F10.7 using the scalar exponential Gauss-Markov sequence described in [11].

Ballistic Coefficient Model
An object traveling thought the Earth’s atmosphere will experience aerodynamic forces that can be decomposed into
two terms, drag and lift. Drag acts in the direction of the velocity relative to the atmosphere, and lift acts in a 
direction which depends on the orientation of the spacecraft and is perpendicular to drag. In most cases involving 
LEO satellites, drag will tend to dominate (see [12, 13]). The magnitude of the acceleration due to drag can be 
represented by
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where adrag is the acceleration caused by the drag acting in the direction opposite of v


,  is the atmospheric 

density, m is the mass of the satellite, v


is the velocity of the satellite with respect to the atmosphere, DC is the 

coefficient of drag, and � = �� � �⁄ is the ballistic coefficient. Here we are assuming v


to be equal to the satellite’s 
inertial velocity, and in effect we are neglecting the component of the atmospheric velocity that co-rotates with the 
Earth. The coefficient of drag is used to represent the effect of momentum transfer between the satellite and the 
surrounding atmosphere. The coefficient depends on the satellites shape and orientation, flow conditions and surface 
chemistry effects. The ballistic coefficient is expected to decrease as a function of altitude (see figure below). 

http://celestrak.com/


Fig 2.  Drag coefficient as a function of altitude for various shapes.  Figure is due to Moe [8]

In order to simulate this behavior, a physics-based model of the drag coefficient was used. At LEO altitudes where 
the mean free path of a gas molecule is much larger than the size of the satellite, the coefficients of drag can be 
computed exactly for cases involving simple shapes, like spheres, cylinders and flat plates. We will use the model 
described in [14] to compute the drag coefficient, which is based on Sentman’s treatment of drag in free molecular 
flow conditions [15, 16] (with modifications due to Moe [10] in order to account for the effect of the 

accommodation coefficient, accom , discussed above). The ballistic coefficient was modeled in the following way. 

The acceleration due to drag has terms related to the area-to-mass ratio, the spacecraft velocity, the atmospheric 
density, and the coefficient of drag. For this analysis, it was assumed the area-to-mass ratio was constant. In order to 
model the spacecraft’s coefficient of drag, it was necessary to know its shape. Unfortunately, the shapes of 
spacecraft are oftentimes complicated, and no detailed geometry model is typically available. In order to simplify 
the analysis, the satellite geometry was modeled as if it were a collection of spheres, plates and cylinders when 
computing the coefficient of drag. Three shape parameters, s1, s2 and s3 were drawn from a uniform, random 
distribution between 0 and 1. An effective coefficient of drag was then computed as the weighted sum of the 
coefficients for a sphere, a square plate at normal incidence, and a cylinder (with its long axis aligned with the 
velocity vector),

                            ��
���

=
����

������
 � ����

��������
 � ����

�����

��������
  .

As time advanced, the ballistic coefficient was modeled to slowly decrease in value as predicted by physics.

4. UARS EXAMPLE

The NASA Upper Atmospheric Research Satellite (UARS) was selected as a test case for the MCMC Re-entry 
Uncertainty Quantification algorithm. UARS re-entered the Earth’s atmosphere at 0400 GMT on September 24, 
2011 [17]. The location of the re-entry was reported by the Joint Space Operations Center at Vandenberg Air Force 
Base in California as 14.1 degrees South latitude and 170.2 degrees West longitude. The MCMC algorithm requires 
data on the satellite’s semi-major axis history. This data can be obtained by using the Two-line Element (TLE) files 
published online through the www.space-track.org website, operated by the United States Strategic Command 
(USSTRATCOM). The TLE data were transformed into osculating orbital elements, from which a series of semi-
major axis values were created. A total of 5 TLE files were used as input to the algorithm, spanning from the last 
recorded UARS TLE (approx. 90 befroe re-entry) to 24 hours before re-entry, spaced at roughly 12 hours apart. 
With this set of data, the MCMC algorithm was ran, with a random initialization of the ballistic coefficient and 
shape parameters.  Fig. 3 below shows the convergence of the algorithm as a function of the number of iterations 
performed. The ballistic coefficient can be seen to converge to a mean value of approximately 0.0091 m2 / kg with a 
standard deviation of 0.0003 m2/kg.      

http://www.space-track.org/


Fig. 3. A large number of Markov Chains were initialized at different values of ballistic coefficient and shape 
parameters. The MCMC algorithm described in table 1 was executed for 300 iterations. The ballistic coefficient 
sampled by each chain converged to a value of 0.0091 by 150 iterations.

Fig. 4 below shows the distribution of re-entry times computed using the MCMC Re-entry UQ algorithm. The most 
likely re-entry time was computed to be 09/24/2011 04:16:1.8 UTC, with a standard deviation of 0.61 hours. The 
distribution is not symmetric, and shows a long tail towards later re-entry times. Figure 5 shows the distribution of 
re-entry locations. The density of points plotted on the map indicates the relative probability of the satellite re-
entering at the indicated position. The actual re-entry location is contained in the left-most tail of the distribution.  

Figure 4 Distribution of re-entry times computed using MCMC UQ. A total of 5 TLE files were used as input to the algorithm, 
spanning from the last recorded UARS TLE (approx. 90 befroe re-entry) to 24 hours before re-entry.



Figure 5 Distribution of re-entry locations. The density of points indicates the relative probability of the particular location. The 
actual re-entry location (14.1 S, 170.9 W) lies in the tail of the predicted distribution. The sparse distribution of points in the right 
hand side of the distribution is due to lack of sufficient statistics. 

5. CONCLUSION

Estimating the uncontrolled re-entry of a satellite is difficult due to the uncertain nature of the modeling required to 
compute a trajectory. The uncertain nature of the re-entry reduces the utility of a point estimate and emphasizes the 
benefits of a robust estimate of the uncertainty. A simple method of quantifying this uncertainty was introduced that 
did not require knowledge of hard to obtain data, such as satellite geometry and ballistic coefficient. A data-driven, 
Markov Chain Monte Carlo approach to Uncertainty Quantification was described and demonstrated on the UARS 
satellite. Performance was good in cases involving more than 150 MCMC iterations. A simple procedure was 
described for diagnosing convergence of the MCMC algorithm and showed good performance in the case of the 
UARS satellite re-entry.  
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